CHALMERS |

5 UNIVERSITY OF GOTHENBURG

Thesis Project Proposal (30 hec)
Master of Science in Department of Computer Science
and Engineering

Date: 2016/01/26

Fuzzing: The Future or Just a Fuss?

Emil Edholm: TDAG602 - Language-Based Security
EDA263 - Computer Security
EDA491 - Network Security
EDAQ09?2 - Operating Systems
DATI51 - Programming Language Technology

David Goransson: TDA602 - Language-Based Security
EDA263 - Computer Security
EDA491 - Network Security
EDA092 - Operating Systems

Keywords: Fuzzing, Testing, Penetration Testing, Security

1 Introduction

The development of software has come a long way since its inception. It is not uncommon for
projects to contain several thousands of lines of code, or more. With such a large code base, it is
very easy for security related bugs to go undetected, even if there are tests. Some of these bugs
may be hard to identify through the use of normal testing, such as unit tests or integration tests.
The bugs may be improbable corner cases that no one thought to test for, and they may pose a
serious security threat.

Fuzzing is another type of testing technique that one can employ. A fuzzing application, called a
fuzzer, will throw massive amounts of carefully generated input to the target application with the
intention of finding crashes and anomalies in state. This can be done either on a white box, i.e. an
application where the tester has source code access, or a black box, where the tester does not have
access to the source code. Fuzzing is normally viewed as a penetration testing tool, but can also be
used for finding ordinary bugs and crashes when given extraordinary input.

Our hope is that our finished work leads to a greater understanding about fuzzing and bug-finding
principles in general. This also includes raising awareness about security related issues that
unexpected input can have on an application. Since fuzzers can be quite hard to configure correctly
and has a steep learning curve, we believe that our work can somewhat lower this curve and make
fuzzing a more approachable alternative early in the software development phase. The hope is that
you should not have to be a security expert in order to use fuzzing efficiently.



CHALMERS ‘ UNIVERSITY OF GOTHENBURG

2 Context

There exist two major categories of fuzzers: generational (sometimes called grammar-based) and
mutational. Generational fuzzers generate random input within a known pre-configured template.
This could be, for example, a protocol RFC or a file format specification. Mutational fuzzers use
an existing file (or data), called a seed, and makes small mutations of the seed to use as input to the
target application and does therefore not have to know anything about the target application.

The paper Program-Adaptive Mutational Fuzzing (Cha, Woo & Brumley, 2015) describes a new
way of using mutational-based fuzzing on applications where the target source code is unavailable
(black box testing) and compares the results of this algorithm against a number of existing fuzzing
software.

The above mentioned paper used common unix applications in their testing. Godefroid, Levin &
Molnar (2008) discusses whitebox testing in a Windows environment, where they test against
undisclosed common Windows applications.

Although the above sources are non-exhaustive on the concept of fuzzing they cover the different
techniques in broad terms and cover the basics of a few of the different techniques we wish to
evaluate. There also exists many other papers that discuss different techniques for finding security
related bugs in software using automated- or semi automated methods, but as far as we have been
able to discern, there are no research papers that discuss and compares fuzzing as a whole.

3 Goals and Challenges

Part of our goal is to evaluate and compare the efficiency of mutational and generational fuzzers.
By rigorously testing fuzzers we aim to differentiate what techniques proves most competent, what
advantages they may have, and also investigate the potential for future improvements. Fuzzing is
an endless process, thus one must consider the efficiency with respect to time. How do your know
your have fuzzed enough? What kind of code coverage is achievable? Some techniques may find
specific types of bugs in a fast manner whilst other may take longer time and vice versa. This type
of questioning will be taken in consideration when evaluating the different fuzzers and algorithms.
Is an advanced “smart” fuzzer, such as AFL (AFL, 2016), significantly better than a fuzzer that
can be written in ten lines of code?

The first goal will be to select the fuzzers that we choose to evaluate. The criteria we have is that
the fuzzers should be open source and still be in development. We define being in development as
having had at least one update in the last two years.

The next goal will be to select target applications with great care, i.e. those applications that we
will run the fuzzers on. Our selection of these applications will primarily be based upon
applications used by cited sources that write about automated testing techniques, such as fuzzing.
We will also test the fuzzers upon applications that we deem interesting but will include results
from these, more as a footnote than anything concluding. We will also test an application that we
have made with known bugs, in order to see if and how many of them are found when fuzzing.



5§ UNIVERSITY OF GOTHENBURG

CHALMERS |

FX

One of the challenges throughout this master thesis will be to try and deceive the fuzzers that we
have chosen to evaluate. By developing an anti-fuzzing algorithm, our goal is to design it in such a
way that it is very hard for a fuzzer to find bugs. The reason for doing this is two-fold, first and
foremost, if you are able to to “fool” the fuzzer, then you have also found an angle of improvement
that could possibly be implemented, and the other reason is investigating if it is possible for a
company for example, to develop an algorithm that detects that their application is being fuzzed
and take countermeasures. The reason for this could be to make it harder for outside parties use
automated tools to find vulnerabilities in their application.

We also aim to to touch upon the subject of how fuzzing can be more tightly integrated with
software development. Currently fuzzing is a technique mainly used to find vulnerabilities and
bugs post-production and require an in-depth knowledge in order to configure and run them
efficiently. However, the ability to test different parts of an application with fuzzing during
development in an user friendly fashion may improve code quality and the likelihood of finding
bugs before they can cause any harm. Are different fuzzers similar enough to be combined into a
common interface, such as an IDE plugin? Is it worth it, with respect to bugs found and time
trade-off?



5§ UNIVERSITY OF GOTHENBURG

CHALMERS |

FX

4 Approach

The first step will be to do an in depth research about the the different fuzzing techniques
commonly employed, i.e. the different kinds of mutational fuzzing and how grammar-based
fuzzers work. Based on this research we can determine which fuzzers will make up the core of the
analysis to be done in the next step.

Each of the selected fuzzers will be researched to gain a deep knowledge of how they work and
what the differences are between them. We will start fuzzing a selection of applications with
known bugs and potential unknown bugs and see how many of them each of the different fuzzers
find and what time it took to do so. The fuzzers will be applied on each target application for an
appropriate and reasonable amount of CPU hours. This research will answer questions such as
what percentage of crashes are (probably) exploitable as security holes?, What kind of code
coverage can you achieve?, How many found faults in a certain timeframe etc. This also ties in
with questions such as what types of bugs can be identified by the use of fuzzing? Can you
identify behavioral anomalies?

Our hand-crafted application will be built in several iterations, to test different types of bugs and
vulnerabilities that fuzzers commonly are used to find, such as privilege escalation and memory
corruption. For each iteration we will try to adapt to the fuzzing techniques used and their
weaknesses. We will try and introduce functionality that runs properly yet the fuzzer are unable to
fuzz.

Results of the fuzzing will then be used as a baseline for future tests when our fuzzer-fooling
algorithm has been applied to the target applications, including our own. The experiment will be
redone with the modified applications and the results compared to the baseline experiment.

A summary of our criteria for completion is as follows:
- An evaluation of the fuzzers with tests against the selection of applications along with our
own. The evaluation will address efficiency, speed and accuracy among other things.
- Testing how, or if it is possible to avoid fuzzing by implementing an anti-fuzzing
algorithm and discuss possible enhancements.
- An investigation of the options for integrating and making fuzzing easier to use with
regards to software development.



CHALMERS UNIVERSITY OF GOTHENBURG
5 References

Cha, S. K., Woo, M., & Brumley, D. (2015). Program-Adaptive Mutational Fuzzing.

Godefroid, P., Levin, M. Y., & Molnar, D. A. (2008, February). Automated Whitebox
Fuzz Testing. In NDSS (Vol. 8, pp. 151-166).

AFL, American Fuzzy Lop (2016, January 26). Retrieved from
http://Icamtuf.coredump.cx/afl/



