
Escaping the Fuzz
Evaluating Fuzzing Techniques and How to Fool them with
Anti-Fuzzing

Master’s thesis in Computer Systems and Networks

DAVID GÖRANSSON
EMIL EDHOLM

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s thesis 2016

Escaping the Fuzz

Evaluating Fuzzing Techniques and How to Fool them with
Anti-Fuzzing

DAVID GÖRANSSON
EMIL EDHOLM

Department of Computer Science and Engineering
Division of Software Technology

Chalmers University of Technology
Gothenburg, Sweden 2016

Escaping the Fuzz
Evaluating Fuzzing Techniques and How to Fool them with Anti-Fuzzing
DAVID GÖRANSSON
EMIL EDHOLM

© 2016 DAVID GÖRANSSON, EMIL EDHOLM.

Academic supervisor: Alejandro Russo
Department of Computer Science and Engineering

Industry supervisors: Daniel Kvist, Kasper Karlsson
Omegapoint AB

Examiner: Patrik Jansson
Department of Computer Science and Engineering

Master’s Thesis 2016 Department of Computer Science and Engineering
Division of Software Technology
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A circular flowchart showing the high level concept of anti-fuzzing. A pro-
gram will, from the fuzzer’s point of view, always be in a non-crashing state.

Typeset in LATEX
Printed By TeknologTryck
Gothenburg, Sweden 2016

iv

Escaping the Fuzz
Evaluating Fuzzing Techniques and How to Fool them with Anti-Fuzzing
DAVID GÖRANSSON
EMIL EDHOLM
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Fuzzing is used to find vulnerabilities in applications by sending garbled data as
input and then monitoring the application for crashes. Over the years this simple
technique have evolved to an advanced testing technique that have been used to
find a serious vulnerabilities in a wide range of applications. This thesis sets out
to evaluate two state-of-the-art fuzzers and pinpoint their weaknesses by investi-
gating anti-fuzzing, a technique that prevents fuzzers from finding the crashes and
vulnerabilities. The fuzzers are tested against a test suite of security vulnerability
challenges from the DARPA Cyber Grand Challenge and then against the same test
suite when anti-fuzzing capabilities have been built-in. Our research shows that it
is relatively easy to implement and apply anti-fuzzing techniques that are able to
completely mask crashes and by extension vulnerabilities from fuzzers.

Keywords: security, fuzzing, fuzzer, anti-fuzzing, fuzz-testing

v

Acknowledgements
We would like to thank our supervisor Alejandro Russo for his continuous support
during this thesis project. His ideas and feedback have been an immense help in order
for us to successfully complete this project. We would also like to thank our industry
supervisors Daniel Kvist and Kasper Karlsson for their help and encouragement
during this project. As a final thank you, we would like to thank Omegapoint AB
for lending us servers and hardware that we could use in our evaluations.

David Göransson & Emil Edholm, Gothenburg, June 2016

vii

Contents

1 Introduction 1
1.1 Purpose and Goals . 2
1.2 Scope and Limitations . 2

2 Fuzzing 5
2.1 Fuzzer Categories . 5

2.1.1 Generational . 6
2.1.1.1 Template . 6

2.1.2 Mutational . 6
2.1.2.1 Strategies . 7

2.2 Seeds . 9
2.3 Fuzzing Framework . 10

2.3.1 Feedback Loop . 10
2.3.2 Distributed Fuzzing . 11
2.3.3 Crash Identification . 11

3 Fuzzer Evaluation 13
3.1 Criteria . 13

3.1.1 Rejected Fuzzers . 13
3.2 American Fuzzy Lop (AFL) . 14

3.2.1 Instrumentation . 14
3.2.2 Crash detection . 15

3.3 Honggfuzz . 15
3.3.1 Crash detection . 15
3.3.2 The Perf subsystem . 16

3.4 Target Applications . 17
3.4.1 Cyber Grand Challenges . 17
3.4.2 MediaInfo . 23

3.5 Evaluation Technique . 23
3.5.1 Testing Platform . 24

3.6 Result . 24
3.6.1 Cyber Grand Challenges . 24

3.6.1.1 Execution speed . 26
3.6.2 MediaInfo . 26

3.6.2.1 Execution Speed . 26
3.6.2.2 Crashes . 27

ix

Contents

3.6.2.3 Resource Utilisation 28

4 Anti-Fuzzing 31
4.1 Rationale . 31
4.2 Objective . 31
4.3 Approaches . 32

4.3.1 Active . 32
4.3.2 Passive . 33

4.4 Anti-Fuzzing Techniques . 33

5 Anti-Fuzzing Evaluation 35
5.1 Applicability . 35
5.2 General Approaches . 35
5.3 AFL . 36
5.4 Honggfuzz . 38
5.5 Outcome . 39

6 Ethical considerations 41

7 Conclusion 43

A Appendix 1 I
A.1 CGC Seeds . I
A.2 MediaInfo seeds . II
A.3 Hardware specification for test bed III
A.4 Asan Triage . IV

x

1
Introduction

The concept of a fuzzer was invented in the late eighties by Barton Miller as a
way to do automatic testing of common Unix utilities [1, 2]. As he described the
term: "I wanted a name that would evoke the feeling of random, unstructured data.
After trying out several ideas, I settled on the term fuzz.". Now fuzzing refers to
the systematic approach of sending garbled input to a target application in order
to record any anomalous behaviour. A conceptual view of the fuzzing process can
be seen in Figure 1.1. A fuzzer will generate data that is consumed by a target
application.

Since its introduction, fuzz testing has grown to be a very important tool for
discovering security related bugs in software. There exist fuzzers designed to target
specific protocols, such as FTP, and other more general purpose fuzzers that are
not program or protocol specific. Many large companies have written their own
fuzzers and regularly test their own software with these, including Microsoft and
Google [3, 4]. However fuzz testing is not limited to large companies. Since the
fuzzing process can be run for an unlimited time, having access to a large number of
CPU-cores will speed up the process of finding bugs, but that does not mean that
you need a super computer to fuzz a target application or protocol.

One might imagine a small company that releases a new application, but does
not have access to a large amount of servers for running the fuzz testing on. This
company could level the playing field by introducing an algorithm in their application
that makes it harder for fuzzers to target it. They can then fuzz their own software
without the algorithm applied. This obviously has financial advantages since it

Fuzzer

Data

Target Application

Figure 1.1: Conceptual overview of fuzzing process

1

1. Introduction

allows the company to release their product earlier, knowing that any adversaries
will have a hard time finding vulnerabilities through the use of fuzzing. Additionally,
such an algorithm could reduce the risk of bad publicity due to potential security
related issues in the released software. We wall that algorithm anti-fuzzing.

Anti-fuzzing is a concept that is similar to obfuscation. The target binary is
hardened against fuzzing, but like obfuscation it is only meant to slow down an
adversary rather than stopping them. The NCC Group has released a white paper
that discusses anti-fuzzing in broad terms and talks about any potential impact it
may have [5], however we have found no real research on the area.

This thesis consists of two majors parts: an evaluation of fuzzers and an eval-
uation of anti-fuzzing. To achieve this the thesis will first, in Chapter 2, cover the
basics of fuzzers and the fuzzing process. Thereafter, in Chapter 3, the evaluation
and comparison of two state-of-the-art fuzzers are made. In the Chapters 4 and
5 we cover the theory and evaluation anti-fuzzing and show how the fuzzers fairs
when anti-fuzzing capabilities are built in the target applications. Finally ethical
considerations and a conclusion of our work is covered in Chapters 6 and 7.

1.1 Purpose and Goals

The goal of this project is in part to investigate and develop an anti-fuzzing algo-
rithm. The project will consist of two parts: the first part aim to test fuzzing on
selected targets in a normal setup. The second part will consist of developing and
evaluating the anti-fuzzing algorithm. The anti-fuzzing will be done by applying the
algorithm on the selected targets and redoing the fuzz test in the same way as in
part one. Now the results from part one and two can be presented and compared,
with respect to the developed anti-fuzzing algorithm.

1.2 Scope and Limitations

In order to make our research relevant and not too general, we have introduced a
few limitations on the scope of the thesis. These limitations mainly focus on the
fuzzers and applications selected.

To keep the research worthwhile and interesting, we have chosen to target current
state-of-the-art fuzzers. We also required them to be under active development,
defined as having had an update in the last two years. For the study we have chosen
to only target publicly available fuzzers. Any non-free commercial fuzzers will be
out of scope. The reasoning behind this is threefold: (1) The source code of the
fuzzer is often not publicly available, therefore it is hard to determine and discuss
how they work in an unbiased manner. (2) Many commercial products come with
license agreements that dictate how they may be used, and what information can
be released about any results. There may also be restrictions on how many fuzzing
instances that can be run simultaneously (3) Commercial fuzzers cost money.

2

1. Introduction

The target applications will be limited to the *nix platform. The *nix platform
offers a wide range of open source applications compared to other platforms, such
as Windows and OS X. When using a fuzzer such as afl-fuzz [6], which relies on
injected instrumentation to work optimally, having access to source code is essential
to doing a fair comparison. Moreover, being able to read the source code allows for
easier debugging and understanding of the targets.

A fuzzer generates input that a target application consumes. A consequence of
this is that any target application must consume some kind of input for fuzzing
to be of any use. A target application may use input in different ways: (1) the
target could be a file format parser, (2) take input via standard input (stdin) or (3)
communicate using an interface, such as a network socket. Network applications is
out of scope for this thesis.

3

1. Introduction

4

2
Fuzzing

Evaluating the performance of fuzzers require theoretical knowledge of the fuzzing
process. This chapter presents the two different categories of fuzzers, describes the
use of seed values, and finally goes into detail what a fuzzing framework is.

2.1 Fuzzer Categories

A fuzzer is an application that generates input test cases for some target applica-
tion [2, 7]. This can either be done by altering normal, correct inputs or by gener-
ating completely new test cases. A fuzzing framework can then use these generated
test cases to try to induce crashing or deadlock states in the target application [1, 8].

A naive approach to this process, is to randomly generate data as fast as possi-
ble. However, testing this data using the target application takes more time than
generating it. For example, starting several thousand processes per second will in-
cur overhead that slows the whole fuzzing process down. This means that for the
fuzzing process to be effective it must not generate test cases that are useless and
leads to work being done unnecessarily. Such test cases could for example be cases
where the target discards the input outright because it does not pass some validation
algorithm.

Symbolic execution is a software testing technique that is used to trace all possible
executions paths and the input required to reach them [9]. This is essentially what
fuzzing tries to achieve as well, but through the use of trial and error. The reason
symbolic execution does not replace fuzz testing is that it is an resource costly
technique and is currently not feasible for testing large applications, in part due
to the path explosion problem [10]. Concolic execution is a term combined from
symbolic and concrete, where instead of only using symbolic values, an execution is
also done with concrete values in order to increase performance. Current research
on fuzzing has been focused on trying to combine the strengths of symbolic/concolic
execution in order to eradicate the weaknesses of fuzzers [3, 11, 12, 13, 14].

Unlike static analysis tools, a fuzzer does not need access to the source code
of a target application in order to work. However, access to the source code may
indirectly grant a fuzzing framework observational capabilities, by for instance, pro-
viding a feedback loop which drives the coverage of the different fuzzed inputs.
Fuzzing is normally viewed as a penetration testing tool, but can also be used for

5

2. Fuzzing

finding bugs and crashes that are not security related.
There exist two major categories of fuzzers: generational (sometimes called

grammar-based) and mutational [8]. The two following sections describe these cat-
egories in more detail.

2.1.1 Generational

A generational fuzzer is a fuzzer that instead of mutating existing data, generates
new data based on a template or a grammar specification. By definition a genera-
tional fuzzer is also considered a smart fuzzer. The term smart fuzzer refers to the
fact that the fuzzer is context aware, and has in-depth knowledge about the target’s
input format and flow.

2.1.1.1 Template

A generational fuzzer uses a template which defines the structure of the data to
be generated. The goal of a template is to accurately represent the data to be
consumed by the target in order for the fuzzer to generate input. In many cases
applications use standardised protocols, such as RFCs (Requests for Comments) or
custom protocols, which then can be interpreted to create templates.

A template is a very detailed depiction of all possible inputs. For example
in a protocol specification, each possible field is defined along with what type of
data it may contain. The expressiveness of the template is both a strength and a
weakness. Creating a template is a time consuming and precarious process, making
it easy to make a mistake. How accurate a template represents the specification
will directly affect the results of the fuzzing. A template that does not comply with
the specification is less likely to achieve a high code coverage since less data will be
valid. Conversely, a high quality template allows a fuzzer to generate valid data for
complex fields, such as checksums or challenge-response messages.

Even though many of the applications that are fuzzed make use of standardised
protocols or file formats, there does not exist any standardisation of templates. Each
generational fuzzer has a different way of implementing their templates. As a results
of this, templates can not easily be shared between generational fuzzers.

2.1.2 Mutational

A mutational fuzzer is, as the name implies, used on existing data. It takes a seed
value and applies different mutation strategies on it. This yields new mutated seeds
that can be tested against the target application. Depending on different factors, a
seed may be reused for further mutations or be discarded. Note that it is the fuzzing
framework that makes these decisions and not the fuzzer itself, tough in many cases
the framework is built into the fuzzer. These decisions are made in the feedback loop
(see Section 2.3). The feedback loop allows the framework to gain more information

6

2. Fuzzing

about how the target behaved, based on a certain mutation, and can make a better
decision about whether or not a mutation was successful or not.

The use of a seed value means that the fuzzer does not have to know anything
about the structure or input requirements of the target. A mutational fuzzer is
therefore most often classified as dumb. The negative side of this is that many
mutations are unfruitful because the fuzzer does not know what the target expects.
A successful fuzzer generates or modifies data in such a way that the target will
accept the input, and not outright discard it. For example, consider the application
in Listing 1: a simple program that reads some value from standard input and checks
the given value against a stored magic value. A mutational fuzzer will struggle with
this program since the probability of making a mutation where the input corresponds
to the magic value is low.

A guided fuzzer such as American Fuzzy Lop (AFL) will have more success with
this example, since if one mutation results in the doWork() branch, AFL will save
this test case and do the following mutations based on this test case. The probability
of reaching such a mutation is the same as any other mutational fuzzer, however
any subsequent mutations will always have a way of reaching the doWork() branch.
To combat the problem of mutational fuzzers getting "stuck", Stephens et al. [11]
propose a modified version of AFL whereby concolic execution is used to drive
the fuzzer to new code compartments. In scenarios where the fuzzer is stuck in one
compartment, a concolic executor takes over and guides AFL to a new compartment,
if applicable. In the example of Listing 1, the concolic executor would take over from
AFL after a certain time where no new paths have been reached. This produces the
magic number that then allows AFL to reach further compartments in the doWork()
branch.

1 #define MAGIC_STR 0xedaeda
2 int main(int argc, char const* argv[]) {
3 char *input = readFromStdin();
4 int inputInt = atoi(input); // Convert string to int
5

6 if(inputInt == MAGIC_STR) {
7 doWork();
8 } else {
9 error("Invalid magic number!");

10 }
11 return 0;
12 }

Listing 1: A simple program that will not do any work unless given a magic number
as input

2.1.2.1 Strategies

A mutational fuzzer employ several different strategies when mutating seeds. Differ-
ent fuzzers may employ different strategies, and may perform them in different ways

7

2. Fuzzing

(e.g. where to apply them). Little research has been performed on the mutational
strategies employed by fuzzers and the techniques have mainly derived from intu-
itive reasoning and experiments during development [15]. For example, some of the
strategies have evolved to trigger commonly made programming errors, such as off-
by-one errors or integer overflow. Other strategies, such as the dictionary strategy,
have been developed to overcome some of the limitations of mutational fuzzers.

Many of the strategies used by different fuzzers today are alike, and can be
summarised into the following categories: bit and byte flips, arithmetic operations,
interesting values, extending, trimming, and dictionary. It is important to note that
depending on the implementation, the strategies may produce different results.

Bit and byte flips One of the most simple and basic strategies. A fuzzer using
this strategy will choose a part of the seed being mutated, and flip one bit or
one whole byte. A single bit flip can for example affect the target’s branching
in a considerable way. Boolean values parsed from the input can be represented
by a single bit. Therefore a bit flip can change a true value to a false value.

Arithmetic operations This strategy involves the fuzzer reading for example 32
or 64 bits of the data being mutated, parsing it as a number, and then per-
forming arithmetic operations, such as addition, subtraction or multiplication
on it. Afterwards the number is written back in the same place the fuzzer read
it from. Binary file formats and protocols generally represent numbers in the
same way as programming languages, 8-, 16-, 32- or 64-bits. Performing arith-
metic operations on chunks of the seed may incur subtle bugs the programmer
had not thought to check for.

Interesting values A set of interesting values are defined in the fuzzer and then
used to replace data in the seed. The set of values generally contain extreme
values, such as minimum and maximum values, and values close to zero. Values
may be of different bit lengths and can be formatted in both little and big
endian.

Extending Extending the seed with more data. Allowing seeds to grow, the hope
is that more data is parsed by the target application than it expects, making
it behave in an undefined way. The extending can be made in several ways, for
example randomly generating data which is added to the seed or by duplicating
parts of the seed.

Trimming Trimming down a seed to a shorter version. This strategy can have
multiple benefits. The target application can misbehave if it expects the seed
to be a certain length. Alternatively, if a seed can be shortened without
affecting the behaviour of the target, then you can increase the performance
of the fuzzer. A smaller seed which still executes the same path in the program
will cause less unnecessary mutations.
Trimming can also be used to find the smallest mutation of the seed that still
causes a crash. By removing excess data there will be less data to analyse
while debugging the cause of the crash.

8

2. Fuzzing

Dictionary To combat the limitations of mutational fuzzing, some fuzzers may
implement a dictionary strategy. This strategy borrows some concepts from
generational fuzzing in that the user can specify a dictionary of common word
inputs that the target application takes as input. This could for example
be protocol keywords such as "Set-Cookie" or "Username". The dictionary
strategy could be very useful in some scenarios, since the probability of getting
"Username" by the use of the other mutational strategies is low.
The fuzzer will then use the dictionary to add new words or change existing
words. For example, one could fuzz source code with the help of the dictionary.
If the fuzzers sees the word public, it could replace it with protected if both
of those words were defined in the dictionary, which may not be valid source
code in some circumstance. Without the dictionary, those words would hold
no special significance to the fuzzer. In that respect, this strategy is similar
to the Interesting values-strategy. This is an effective strategy at overcoming
some of the limitations of mutational fuzzing.

2.2 Seeds

A seed is user provided value that is used as a starting point for the fuzzing process.
Mutational fuzzers relies more on input seeds than generational fuzzers, but their
use is not limited to one or the other. A set of seeds to be used as input is called
input corpus.

Generational fuzzers can use seeds to set up defaults that should not change. Ex-
amples of this can be username and passwords fields when fuzzing network protocols.
Trying to guess credentials in addition to the normal fuzzing process is obviously
unnecessary.

The results achieved by a mutational fuzzer will heavily depend on the input seed
provided. The chosen seed will directly correlate with the amount of achievable code
coverage. This is due to the fact that the seed may only trigger some functionality
in the target. For example, consider an application that extracts metadata from
different media files, such as JPEG, PNG, WAV, etc. If a PNG image file is used
as a seed to this application, only the parts related to PNG files will be tested.
Different PNG files with different functionality may also trigger different parts of
the code. For example, one image may include transparency while others do not.
This is the reason why the use of multiple unique1 seeds may be advantageous if one
wants to increase code coverage.

A seed should preferably be small. In the case of a mutational fuzzer, the size of
the seed corresponds to how much data the fuzzer has to mutate. If possible, one
should try to minimise the seed to its smallest possible size that does not affect the
functionality it triggers. For example, fuzzing an image with 1920x1080 pixels will
probably take a longer time than say 10x10 pixels, even tough the image trigger the

1Unique in the sense of the functionality that they trigger in the application.

9

2. Fuzzing

same functionality in the target application, only with a smaller set of image data.

2.3 Fuzzing Framework

A fuzzer is in and of itself not useful without a framework (also called harness) that
feeds the fuzzed output as input to a target application and observes its behaviour.
The framework can also extend the fuzzer with different metrics that help the fuzzer
decide if the current mutation/generation is beneficial [6, 2]. What is beneficial (or
not) depends on the framework and what observational power it has. The fuzzing
framework can be a standalone application, or it can be built into the fuzzer itself.
Whether it is a standalone application or not, a fuzzing framework will have the
same basic observational power.

Observational power refers to what the fuzzer can observe of the target appli-
cation during or, after execution. On the *nix platform and for locally running
applications, the framework can observe signals sent to the target, such as SIGSEGV,
SIGABRT, or SIGFPE; the (non-zero) return code; and timeouts whose length is spec-
ified in the framework. These are the basic observational powers that all fuzzing
frameworks will have access to.

Signals are used for inter-process communication to notify a process of different
events. The signals can be generated by the process itself, another process, or the
operating system kernel. Upon receiving a signal, the receiving process will be
interrupted by the operating system and its signal handler will be executed. If the
process previously have not defined a custom signal handler the default handler will
be used. Depending on what signal is received and the configuration of the process it
may ignore the signal; use its own signal handler; terminate execution; or terminate
and generate a core dump [16]. An application that terminated due to a received
signal will have a return code equal to the unique signal identification number.

2.3.1 Feedback Loop

A feedback loop allows the fuzzer to make an informed decision whether or not a seed
is useful or not. A fuzzing framework will monitor the target application in order to
discover if the generated or mutated seed led to a new and previously undiscovered
path in the program. Figure 2.1 visualises this concept, where feedback is provided
from the target application to the fuzzing framework who then can make informed
decisions about the usefulness of the generated/mutated data. Both generational
and mutational fuzzing frameworks make use of feedback loops.

Some fuzzing frameworks allows the user to write custom feedback loops, that
are used alongside the ones built into the framework. This expanded expressiveness
allows the user to provide custom feedback or trigger action(s) when some expected
behaviour in the target application occurs.

10

2. Fuzzing

Seed or Template

Fuzzing Framework

Fuzzer

Data

Target Application

Feedback

Figure 2.1: Fuzzing process where a feedback loop is employed

2.3.2 Distributed Fuzzing

The execution speed of a fuzzer is important. Greater computational power enables
faster fuzzing of the target. One way of achieving a higher execution speed is to dis-
tribute the workload. This can be done by running fuzzers on different servers and
syncing the work. The framework can help with this, as well as telling the fuzzer to
divide its technique in order to avoid doing the same work on two different machines.
This obviously depends of the fuzzer used, since some fuzzers use a stochastic ap-
proach while others use a more deterministic approach to the mutations/generations
made.

2.3.3 Crash Identification

Identifying, bucketing, and minimising bugs is a major challenge when fuzzing. Once
an input that causes a crash has been identified. The framework needs to determine
if another input has caused the same crash. It also needs do bucketing and sort
the crashes depending on what signal caused it. E.g. a SIGABRT is probably not as
interesting as a SIGSEGV.

For each crashing test case, not every bit field is relevant for the crash. It is
possible to try and revert the seed as much as possible towards the original. By
doing this you get the minimal case that still cause the same crash [17]. There also
exist research on other ways of identifying bugs, that for example compares program
state and stack pointers [18, 19]. Many fuzzing frameworks include tools for helping
with these tasks.

11

2. Fuzzing

12

3
Fuzzer Evaluation

This chapter details the evaluation process of the two selected fuzzers, AFL and
Honggfuzz. It presents the criteria for the selection of fuzzers, a detailed analysis
of both fuzzers’ capabilities, the target applications, and lastly the results of the
fuzzing process.

3.1 Criteria

In order to make the fuzzer evaluation interesting and up-to-date we settled on the
following criteria:

1. Open source and publicly available.
2. Mature and up-to-date.
3. State-of-the-art.
4. Target and run on the *nix platform.
5. Include, or have a built-in, fuzzing framework.
6. Have more advanced observational powers than the basics described in Sec-

tion 2.3.

3.1.1 Rejected Fuzzers

There exist many different fuzzers, some purpose-built, some more general purpose.
Below are some common and interesting fuzzers listed which were considered but
were not accepted for further study.
Radamsa is a multi-purpose mutation based fuzzer written in Scheme Implemen-

tation (SCM). Radamsa is a fuzzer, without any built-in framework, that mu-
tates data through stdin. The data is mutated in a non-deterministic fashion
with the option of providing a seed value to the random function. Due to the
fact that Radamsa does not include a fuzzing framework, the tester will have
to take care of possible error detection and crash handling themselves, but is
nevertheless useful in conjunction with other fuzzing frameworks. Radamsa
has been used to find security related issues in Mozilla Firefox and Google
Chrome among others [20].

13

3. Fuzzer Evaluation

Sulley is a generational fuzzing framework written in Python [21], targeted towards
network protocols. However, Sulley can also target file-formats and normal file
consumer applications. Rejected due to not having advanced observational
powers and having to specify our own templates introduces bias and allows for
the fuzzers to not being objectively evaluated.

Peach is a generational and mutational fuzzing framework written in Python [22].
Uses so called "Peach-pits" for template creation, that while being very expres-
sive is a time consuming process to get right. Rejected due to the community
version of Peach not having received an update for a long time and the com-
mercial version not being open source and publicly available.

Zzuf is a mutational fuzzer with limited fuzzing framework capabilities [23]. Zzuf
works by intercepting certain function calls and fuzzing the output that is
sent to the target application. Rejected due to not having advanced powers of
observation.

QuickFuzz is a Haskell built fuzzer that uses an interesting approach to gener-
ational based fuzzing. Normally generational based fuzzers needs someone
to manually specify the template used. What QuickFuzz does instead, is
leverage Haskell’s type system as a grammar template using libraries from
Hackage [24]. This approach has the advantage of not having to manually
specifying the template, but with the disadvantage of losing expressiveness in
the template. Rejected due to not having advanced observational powers and
being considered somewhat experimental.

3.2 American Fuzzy Lop (AFL)

AFL is a deterministic mutation-based fuzzing framework that uses injected code
instrumentation to detect branching in the compiled binary. If a seed triggers new
branches in the target application but, not triggering a crash, AFL considers this
mutation interesting and will add it to the input corpus. This simple approach
means that AFL is very good at testing large portions of the source code. AFL is a
very successful fuzzer (in terms of security related bugs found) and has found bugs
in security critical systems such as OpenSSH and GnuTLS , among others [6].

3.2.1 Instrumentation

Injected instrumentation is way for AFL to detect the edge coverage for each test
case. This allows it to make decisions about the usefulness of that particular test
case. The instrumentation is code that is injected at each branch point in the target
application. This code updates a memory map that is shared between the target
and AFL with information about the branch taken [15].

AFL’s use of instrumentation means that access to the source code is necessary
and that the target binary have to be compiled with a compiler wrapper. AFL

14

3. Fuzzer Evaluation

ships with wrapper around GCC and Clang, the two most common compilers on
the UNIX-platform, that is responsible for injecting the instrumentation during the
assembly phase of the compilation. There also exists a mode for fuzzing target
binaries where the source code is not available. This mode is however two to five
times slower than the normal injected instrumentation [25].

At the time of this writing, there exists an experimental LLVM mode for AFL
that uses compiler level instrumentation instead of the assembly injection that is
done in normally done. This allows for features that is intended to greatly speed up
the fuzzing process. One of these features is the deferred initialisation. By inserting
__AFL_INIT() in the source code, AFL’s forkserver is able to clone the process at
that point. This considerably reduces the overhead of creating new processes and
since the code snipped can be placed after the initialisation of expensive resources,
the speed can be increased further. However care has to be taken when inserting
this snippet since by placing it wrong, the binary may stop working as intended.

3.2.2 Crash detection

AFL uses a primitive crash detection technique. When the target application is
stopped for some reason, AFL will look at the return code and the signal that
caused the target to stop (if applicable). The crash will be bucketed with respect to
the signal that caused the crash or hang.

In combination with the instrumentation of the target AFL is able to determine
whether or not a crash is unique. If the path taken leading up to a crash is unique,
the crash is also labelled as unique. This means that there can be multiple test cases
classified as unique for the same bug. This is intentional since when the bug causing
the crash has been fixed, the crashing test cases can be used for regression testing,
thus testing all paths leading to the (hopefully) fixed bug.

3.3 Honggfuzz

Honggfuzz is a non-deterministic mutation-based fuzzer that employs the Linux
kernel subsystem Perf in order to determine successful mutations [26]. It does this
by checking the code coverage induced by the seed. On subsequent mutations, seeds
are only added to the input corpus when a new mutation has a larger coverage than
the previous. Honggfuzz has a built-in framework with support for using an external
fuzzer instead of the built-in one.

3.3.1 Crash detection

Process trace (ptrace) is used by Honggfuzz to observe the behaviour of the target
application. Ptrace is a debugging tool that allows a process to inspect and control
the execution of other processes. Ptrace attaches to a target application, referred

15

3. Fuzzer Evaluation

to as a tracee, and allows a tracer, e.g. a fuzzer, to view registers and memory of
the tracee.

When a signal is sent to the tracee, ptrace will stop the execution, thus allowing
the tracer (Honggfuzz) to inspect the target application. Depending on the signal
sent, Honggfuzz can make the decision to either terminate the execution or continue
it. If the target application received a crashing signal (SIGSEGV, SIGABRT, SIGFPE,
etc), Honggfuzz will save the input and bucket it with respect to the current program
counter, instruction that caused the crash, and the signal received. Information such
as stack-pointer address is also saved.

3.3.2 The Perf subsystem

Modern CPU have dedicated built-in registers that monitor performance factors,
so-called hardware performance counters [27]. Perf is a kernel-based subsystem
performance analysis tool for Linux that provides an interface to these counters [28].
Perf allows for statistical analysis on hardware level components but also software
components. At the hardware level the performance counters observe events such
as number of instructions and branches. The number of instructions or branches
executed are useful in fuzzing for determining if the path of execution changed
during two different executions of the target application. Since the counters are
implemented in hardware, the usage of Perf will have a low impact on performance
and is faster than code instrumentation [29].

It is important to note that Perf provides a bird’s-eye view of an execution and
not in-depth knowledge of the path taken within a program and results will vary
to a degree for each execution. Listing 2 provides a simple example how this can
become an issue, the same amount of work will be performed whether the first or
second branch is taken in the program. The statistical measurements will therefore
provide the same results for both branches, whilst an instrumented approach could
identify which of the different branches were actually taken during the execution.

1 chance = flipCoin()
2 if chance > 0.5 then
3 // First branch
4 print "A"
5 else
6 // Second branch
7 print "B"
8 exit(0)

Listing 2: Example where Perf cannot distinguish the branch taken during execu-
tion.

16

3. Fuzzer Evaluation

3.4 Target Applications

American Fuzzy Lop and Honggfuzz were tested against a set of applications. We
choose to use a subset of the DARPA Cyber Grand Challenge (CGC) target suite [30].
The suite consists of over 100 programs (called challenges) written in C that takes
input through stdin. The challenges have been specifically designed to test auto-
mated security vulnerability finding tools. Each of the challenges have one or more
vulnerabilities of varying difficulty and type. All vulnerabilities are defined and
described in the documentation of each program. Since the target suite has been
used in the CGC competition, and thus has been extensively tested, it is unlikely to
contain unknown bugs or vulnerabilities.

A custom-made operating system was built for the CGC competition to en-
sure higher reproducibility of bugs and easier implementation of automated testing
tools [31]. The kernel used in the operating system has a reduced set of only 7
system calls. As a side effect, the target suite per default is not POSIX compliant,
and will not work on other platforms without modifying the source code. To en-
able compatibility with the selected fuzzers, and keep changes of the challenges to a
minimum, a wrapper were built that translates the custom system calls to POSIX
standard allowing the target applications to run on a normal Linux system. Fur-
thermore, the platform does not utilise the standard C library (libc), hence many
standard functions in C are not available and have been reimplemented for each
individual challenge that needs them. Due to the use of a global namespace in C,
the CGC reimplemented libc functions were removed and replaced with the original
ones from the standard C library. Examples of this includes the functions strlen(),
toupper() and atoi() etc.

The results of this fuzzer evaluation is used as a baseline for the anti-fuzzing
algorithms tests presented in Chapter 4 and 5.

3.4.1 Cyber Grand Challenges

Due to temporal restrictions, we choose not not to convert all CGC challenges,
but instead focus on the preselected example set. The example set consists of 17
programs that each have different challenges and vulnerabilities.

Some of the challenges were removed from the fuzzer evaluation. The reasoning
for removing the challenges varies, such as them not being applicable on the fuzzers
selected for evaluation or no longer being vulnerable after the change to POSIX
standard.

Following is a list of the example targets that we choose to use in our evaluation
of AFL and Honggfuzz. The seeds that was provided to the fuzzers when performing
the tests can be found in Appendix A.1.

17

3. Fuzzer Evaluation

CADET00001

CADET00001 is a palindrome checker. Upon starting the program, the user is
prompted to input a text. The program will then validate check if the supplied
input is a valid palindrome. The program will repeatedly query the user for more
input until an EOF is received or the program is terminated in some other manor.
Vulnerability The program uses a buffer for storing the input provided by the

user, which is 128 bytes long. Therefore the application is vulnerable to a
stack-based buffer overflow attack if the provided input is larger than 128
bytes.

Difficulty (Easy) A fuzzer would have to produce an input value larger than 128
bytes in order to find the vulnerability. Due to the simplistic nature of this
program, it was rated as being easy.

CADET00003 (Removed)

CADET00003 contains the exact same functionality as CADET00001.
Reason for Removal The majority of the code of CADET00003 is the same code

as CADET00001, with the exception of the name of a single #define. Due to
the fact that it is essentially a duplicate of another challenge it was removed
from the set of targets. Running this challenge would cause duplicate results.

CROMU00007 (Removed)

CROMU00007 is a payroll system in which the user can register employees, their
salaries and working hours. Once information have been registered with the system
it is possible to make queries on how much employees have earned.
Reason for Removal The crash was not reproducible after the migration from

the CGC platform.

Add reasoning why the program wont crash for us.

EAGLE00004 (Removed)

EAGLE00004 is a simple calculator-like program with very limited functionality. It
consists of three separate programs which are to be connected through pipes, pro-
gram one will send information to program two, which in turn will send information
to program three.
Reason for Removal Since the target consists of 3 different programs that use

inter-process communication they are not applicable on the fuzzers selected
without major modifications to the source code. To keep the result as unbiased
as possible the target was removed.

18

https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/CADET_00001
https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/CADET_00003
https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/CROMU_00007
https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/EAGLE_00004

3. Fuzzer Evaluation

EAGLE00005

EAGLE00005 is a interactive hangman game. To be able to play the game the
player must first enter a password, "HANGEMHIGH!", and then select a 4 letter
seed which determines the secret word for the game. The user is then prompted to
enter one letter at a time until he completes the word or runs out of chances. If the
user completes the game he will be able to enter a name into the list of highscores
else-wise the game will exit.
Vulnerability A stack-based overflow vulnerability is located in the highscore list

functionality. When the user enters his name to the highscore it is possible to
cause a buffer to overflow.

Difficulty (Medium) In many ways EAGLE00005 is similar to CADET00001,
they both contain a simple buffer overflow vulnerability. However, to access
the vulnerability in EAGLE00005 one must by complete the game. The game
itself is not trivial but far from impossible. Therefore this target was rated as
being of medium difficulty.

KPRCA00001

KPRCA00001 represents a simple protocol. The user must initiate the authentica-
tion process by calling HELLO. The service will respond with a message in the format
OK <code>, where <code> is a randomly generated one-time password of length 8
containing uppercase letters and numbers. This password is then to be repeated by
the user with the command AUTH <code> back to the service in-order to authenti-
cate. Once authenticated the user can set data and issue calls to different parts of
the service.
Vulnerability The program contains a stack-based overflow when calling a specific

command to send data to /root64. To trigger the vulnerability the user must
do a series of steps: authenticate, set the mode to encode, set data to a string
larger then 64 bytes and call /root64.

Difficulty (Hard) The program was classified as hard because of the authentica-
tion process. It is hard for a fuzzer to guess a random value, and since the code
is randomly generated for each execution it can not be provided as a seed.

KPRCA00003

KPRCA00003 is an image compressor. The service takes a bitmap with maximum
size of 256x256 pixels as input and outputs a 128KB image in the ACGC image
format.
Vulnerability In order to make the program crash, a bitmap supplied needs to be

close to but not larger than 256x256 pixels and requested to be converted to
a encoding quality of near 100. This will result in the output file being larger
than 128KB and therefore overflowing the output buffer.

19

https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/EAGLE_00005
https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/KPRCA_00001
https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/KPRCA_00003

3. Fuzzer Evaluation

Difficulty (Hard) A fuzzer must first create a valid bitmap, and then fit the needs
to crash the requirements for the program to crash. The combination of many
hard elements to reach the vulnerability we rated this target as being hard.

KPRCA00015

KPRCA00015 implements a RFID-protocol for wireless transactions. The program
can for example issue new cards, perform purchases, perform refunds, display card
balance, and display transaction history.
Vulnerability A vulnerability is located in the refund functionality. To issue a

crash the user must first create a card and authenticate himself with that
card, make transactions and finally issue a refund which is vulnerable. To
enable the vulnerability, an Untrusted Pointer Dereference1, the reference to
the transaction must assert values that allows it to bypass the verification
process used in the refund command.

Difficulty (Hard) To trigger this vulnerability requires the program to go through
a series of steps and perform an authentication process. Furthermore, there
are verification and validation processes used within the program that hardens
it and lowers the probability of a fuzzer to reach the vulnerable code. We
estimate that the vulnerability to be very hard for a fuzzer to trigger.

LUNGE00002

LUNGE00002 provides a lookup service with support for dynamic skip searching,
prefix tree search and naive compression.
Vulnerability The program contains a out-of-bounds memory corruption vulner-

ability that is triggered when a specially crafted entry is added to the lookup
service and a search is performed. When performing the search the newly
added entry will cause the program to try and locate a delimiter outside its
buffer consequently leading to the corrupting memory.

Difficulty (Medium) The program takes simple commands, such as ch_sec and
make_sec for changing and making sections. Without proper seeding it would
be hard for a fuzzer to find these unique strings. However, with the commands
and the delimiter supplied in the seed or through the use of a dictionary a fuzzer
would have an easier time. To make the program crash a fuzzer would have
to use the commands and delimiter combined with random data in a manner
that creates a bad formatted entry and then try to access it.

LUNGE00005 (Removed)

LUNGE00005 consists of 6 small programs, each providing a different functionality;
command and control, contains, does-not-contain, word-count, compression and de-

1https://cwe.mitre.org/data/definitions/822.html

20

https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/KPRCA_00015
https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/LUNGE_00002
https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/LUNGE_00005
https://cwe.mitre.org/data/definitions/822.html

3. Fuzzer Evaluation

compression. By connecting the programs and sending information it is possible to
trigger an overflow vulnerability in the decompression program. However, to achieve
this the programs must be run in a certain order and with specific input.
Reason for Removal Since LUNGE00005 make use of inter-process communica-

tion it is not applicable to the fuzzers chosen for evaluation.

NRFIN00003

NRFIN00003 is a HTTP-like service that allows for a user to manage his internet
connection. The user may execute a command to upgrade his subscription in order
get access to the faster speeds. However, to do so the user must have enough credits
to afford it.
Reason for Removal The vulnerability was not reproducible after converting the

application from the platform.

NRFIN00010

NRFIN00010 is a transaction storage and processing environment for RFID card
payments. Within the system transactions are performed in two or three steps
of the following steps; Initiation, Authentication, Operation and Finalisation. The
program supports functions such as purchases, refunds, display listings of transaction
history, balance inquirers and more.
Vulnerability NRFIN00010 contains three null pointer dereference vulnerabilities.

The vulnerabilities are very similar and is caused due to transactions not being
atomic. For example, when performing a refund the reference to a purchase is
removed from a transaction during the Operation step. If another command,
e.g. listing of transaction history, is issued before the the finalisation step is
performed a null pointer dereference.

Difficulty (Hard) There is a wide range of commands that can be executed in this
program and they require input to be formatted in a specific manner. Gen-
erating the commands for the input would probably be hard and performing
several commands in the correct order even harder.

NRFIN00013

NRFIN00013 is a calculator intended to apply mathematical operations on lists of
numbers. The calculator can perform numerous tasks such as evaluate additions,
average, max, min, sort and much more. In order to use the calculator the user
must first enter a nonce, a randomly generated number only used once, which is
outputted upon starting the program.
Vulnerability The program contains more than 15 vulnerabilities and 6 of them

may result in a crash, such as SIGSEGV, SIGFPE or SIGALRM. Many of the
vulnerabilities are possible due to improper input validation.

21

https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/NRFIN_00003
https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/NRFIN_00010
https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/NRFIN_00013

3. Fuzzer Evaluation

Difficulty (Hard) The use of a nonce in the beginning of this program makes it
hard for a fuzzer to get deep within the program. Bypassing the initial step is
unlikely due to the fact that random values are being generated.

TNETS00002

TNETS00002 is a program that allows a user to have virtual pets. Pets can be
created, deleted and perform simple commands.
Vulnerability TNETS00002 contains a heap based buffer overflow. If the user

renames a pet after it’s creating the new name gets appended to the old one.
If the name is changed several times this will cause a buffer to overflow.

Difficulty (Hard) In order to trigger a crash the fuzzer must first create a bet,
rename it with a long name, several times and then issue a command to the
pet. Each action must also be performed with a sequence number. Due to the
many steps with advanced input this program was rated as hard.

YAN0100001

YAN0100001 is a game similar to Battleship. Each player place their ship and then
take turn to sink the other players ship.
Vulnerability When each command is executed it is stored in a 512 byte buffer.

If a command entered is longer than 512 bytes a buffer overflow will occur.
Difficulty (Easy) To find the vulnerability a fuzzer would have to produce a value

large enough to overflow the buffer, the challenge was rated as easy.

YAN0100002

YAN0100002 is a calculator for the trajectory of a tennis ball. The user is prompted
to input the initial velocity in both X and Y direction, and initial count (when in
time to start evaluate the position of the ball).
Vulnerability Due to several insecure type conversions and usage of floats the

program will misbehave under certain conditions. If a the initial count is set
to a large value some evaluations will be performed incorrectly that may leads
to several vulnerabilities, and finally a out of bounds array write. In total the
source code contains three types of vulnerabilities: Incorrect Calculations2,
Incorrect Conversions between Types3 and Out of Bounds Write4.

Difficulty (Medium) For the program to crash several values has to be set. How-
ever, as explained in Section 2.1.2.1, many fuzzers make use of Interesting

2http://cwe.mitre.org/data/definitions/682.html
3http://cwe.mitre.org/data/definitions/681.html
4http://cwe.mitre.org/data/definitions/787.html

22

https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/TNETS_00002
https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/YAN01_00001
https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/YAN01_00002

3. Fuzzer Evaluation

values that are likely to cause crashes, including extreme values. Therefore
increasing the chance of a bug being triggered.

YAN0100003

YAN0100003 is a simple character counter. The program takes reads a file and
then will return the number of special characters, numbers, spaces, non-printable
characters, lower and uppercase letters there are in the file.
Vulnerability The program contains a out of bounds read because of an 32-bit

unsigned integer operation are made on an 8-bit unsigned integer. If the input
contains a carefully selected number of spaces the usage of the operation may
lead to a segmentation fault due to the adjacent memory being a pointer.

Difficulty (Easy) Like the other targets rated as easy this one requires the fuzzer
to produce large amount of data for it crash. The vulnerability is of a simple
nature, and if the fuzzer manages to produce input with enough spaces the
program will crash.

3.4.2 MediaInfo

A "real-world" program was also selected for testing to achieve a more complete
view of the fuzzers’ performance. MediaInfo is a program that displays metadata
information about the file supplied [32]. This is information such as width and
height if an image is supplied or bitrate, length etc if it is a video. MediaInfo has
support for a large number of different file formats, making it an ideal fuzzer target.

MediaInfo is different from the CGC challenges. It was initially released 2002
and since then it has grown to a size of more than 100 000 lines of codes. The
project have mainly been written in C++ which makes it susceptible to several
types of attack if the code have not been written properly. Because of the support
for multiple different file-formats, the parser will inherently be complex, resulting in
an enormous amount of paths that may be taken during executing of the program.

3.5 Evaluation Technique

Ultimately, the goal of a fuzzer is to find vulnerabilities. One way vulnerabilities may
reveal themselves is through crashes. Therefore crashes found with respect to time is
a vital measurement, but factors such as poor crash identification and bucketing may
lead to duplicate bugs which interferes with the accuracy of the result. To ensure an
accurate measurement, the bugs identified were verified crashing and verified unique
to the best of our ability.

Each target were fuzzed for 24 hours with both Honggfuzz and AFL. Hongg-
fuzz used 16 threads while AFL used 16 processes, each locked to a separate CPU

23

https://github.com/CyberGrandChallenge/samples/tree/c9cdfc82ddf3c286fc20b558669cc1e0efdc8c20/examples/YAN01_00003

3. Fuzzer Evaluation

core. AFL were run in the parallel mode, meaning that the master process are run
normally, whilst the slaves are skipping the deterministic steps.

3.5.1 Testing Platform

All tests were performed on a dedicated server running the latest, at the time of this
writing, long term support server version of Ubuntu, 14.04.04 LTS. The server has
8 cores and 96GiB ram. The full specification of the testing platform can be seen in
Table A.2.

3.6 Result

This section details the results of over 900 hours of fuzzing and some 84 000 cumu-
latively reported crashes.

3.6.1 Cyber Grand Challenges

Each target was seeded with suitable data, the full specification of seeds can be seen
in Table A.1.

Out of the twelve CGC targets fuzzed, crashes were detected in five of them.
An overview of the targets that exhibited crashes can be seen in Table 3.1. Both
Honggfuzz and AFL managed to find crashes in the challenges CADET00001 and
YAN0100001. These two challenges are very simple buffer overflow attacks, where
large input directly causes a crash. Furthermore, AFL was also able to find crashes
in EAGLE00005, NRFIN00010 and YAN0100003. We rated these challenges as
being of easy to medium difficulty.

An interesting note is that both fuzzers were unable to find any vulnerabilities
in the programs that were rated hard. These programs contained protection mech-
anisms, such as an initial challenge-response step, than mutational fuzzer will have
trouble with. Re-running these targets with a dictionary supplied to the fuzzers
would possibly have improved the probability of finding crashes. We leave this as
possible future work.

We used a wrapper script around GDB that when fed a location of crashing
inputs and a target, will compare the stack trace of each crashing input and prune
those that have the same backtrace. The full script can be found in Appendix A.4.
Out of the 83 848 reported crashes by both fuzzers, 11 crashes were left after running
the script. Table 3.2 show the full results after culling the crashing inputs. This set of
test cases is more suitable for human evaluation in order to determine exploitability
etc.

Figure 3.1 show crashes reported by Honggfuzz and AFL over a 24 hour period.
We can see that AFL found the majority of all reported crashes within the first
hour, while Honggfuzz continuously reported crashes over the whole 24 hour period.

24

3. Fuzzer Evaluation

Target AFL Honggfuzz
CADET00001 3 3

EAGLE00005 3 7

NRFIN00010 3 7

YAN0100001 3 3

YAN0100003 3 7

KPRCA00001 7 7

KPRCA00003 7 7

KPRCA00015 7 7

NRFIN00003 7 7

NRFIN00013 7 7

TNETS00002 7 7

YAN0100002 7 7

Table 3.1: Table showing which of the targets emitted one or more crashing states
for each of the selected fuzzers.

Target AFL
(Reported)

AFL
(Unique)

Honggfuzz
(Reported)

Honggfuzz
(Unique)

CADET00001 38 757 3 1 229 1
EAGLE00005 40 893 2 - -
NRFIN00010 64 1 - -
YAN0100001 1 092 2 1 685 1
YAN0100003 128 1 - -

Table 3.2: Table showing crashes reported by each fuzzer as well as the number of
crashes after running the crash pruning script from Appendix A.4.

25

3. Fuzzer Evaluation

AFL’s behaviour is consistent with what is specified in the README file: "If a
single bug can be reached in multiple ways, there will be some count inflation early
in the process, but this should quickly taper off." [25].

Figure 3.1: Crashes reported by AFL and Honggfuzz on YAN0100001.

3.6.1.1 Execution speed

Figures 3.2 and 3.3 show the execution speed over time during a portion of the
fuzzing of the target CADET00001. As can be seen, AFL reached an average cu-
mulative execution speed of roughly 48 000 whilst Honggfuzz only achieved around
1 100 executions per second. The exact reason for the big difference in execution
speed is unidentified, but several factors could play a role. E.g. Honggfuzz uses
ptrace which needs to attach to process before execution; AFL instruments the
code before execution; and the scalability of the fuzzer when using several cores.

3.6.2 MediaInfo

MediaInfo was fuzzed for 7 days with AFL and Honggfuzz, for a total of 14 days.
The seeds consisted 24 different file formats, such as JPEG, PNG, OGG, etc. A full
list of the seeds can be seen in Appendix A.2.

3.6.2.1 Execution Speed

The overall executions per second is low for both fuzzers, coming in at around 25
execs/sec. We tried various solutions for trying to speed up the process, such as
deferred initialisation, stripping symbols in the binary in order to reduce the binary
size and removing all but the essential parts of the source code for the CLI, but

26

3. Fuzzer Evaluation

Figure 3.2: Graph showing the number executions per second for AFL on
CADET00001.

AFL
(Reported)

AFL
(Unique)

Honggfuzz
(Reported)

Honggfuzz
(Unique)

9 624 20 8 2

Table 3.3: Table showing how many times AFL and Honggfuzz crashed MediaInfo
as well as how many crashes were left after pruning.

it seems that MediaInfo is just slow and somewhat poorly optimised. The fuzzers
are not the bottleneck with regards to execution speed. An execution speed over at
least 100 would have been preferable.

3.6.2.2 Crashes

The number of crashes reported by AFL and Honggfuzz can be seen in Table 3.3. It
is important to note that the crashes reported by a fuzzer is not unique crashes, even
though the fuzzers have reported so. As discussed in Section 3.2.2 and 3.3.1, Hong-
gfuzz and AFL have different means of determining unique crashes and therefore
also different definitions of what a unique crash is.

During the analysis of the generated crashes reported by AFL, it was discov-
ered that AFL had reported several false-positives. The number of false-positives
generated overtime can be seen in Figure 3.4. Crashes that we were able to repro-
duce during the crash analysis phase. A common factor among these crashes was
that they all were killed through the SIGABRT signal. Although the exact cause of
these false-positives not been determined, it is likely that they are caused due to
the stress put on the system. Honggfuzz, on the other hand, did not produce any

27

3. Fuzzer Evaluation

Figure 3.3: Graph showing the number executions per second for Honggfuzz on
CADET00001.

false-positives.

3.6.2.3 Resource Utilisation

During the testing of MediaInfo, the limitations of the testing platform was investi-
gated. Figure 3.5 shows the CPU and memory of AFL and Honggfuzz during a 24
hour fuzzing process of MediaInfo. AFL utilised all the power of the CPU whilst
Honggfuzz had an average of 44% CPU used.

It was discovered that Honggfuzz seems to have memory leakage issues. During
the 24 hours of fuzzing Honggfuzz continuously kept increasing its memory usage
and afterwards the memory was not released. These issues were apparent while
fuzzing the other targets as well; the memory was only released upon restarting the
testing platform.

28

3. Fuzzer Evaluation

Figure 3.4: Graph showing the number of false positives generated per hour by
AFL on MediaInfo.

Figure 3.5: Graph showing the CPU and Memory usage of AFL and Honggfuzz
when fuzzing MediaInfo for 24 hours.

29

3. Fuzzer Evaluation

30

4
Anti-Fuzzing

The process of hindering and/or delaying a fuzzer from effectively fuzzing a specific
target is called Anti-Fuzzing. To date little to no research has been done on the
subject. In this chapter the rationale behind anti-fuzzing is explained, the objective
outlined, and the approach we used is detailed.

4.1 Rationale

One could imagine a use case for anti-fuzzing as follows: a company has developed
a new application that they want to release as quickly as possible. This could
mean that they will not have time to perform a proper security evaluation of their
application before release (fuzzing a target could take months in some extreme
cases). The aforementioned company could then develop and apply an anti-fuzzing
algorithm to their newly released application. This would mean that any adversaries
trying to fuzz the application would be delayed or maybe even completely hindered.
All the while the company is doing internal fuzzing on their application, without
the anti-fuzzing mechanics applied. Consequently the software company will have a
significant advantage over any external testers.

Anti-fuzzing is possibly a controversial subject. Our rationale for researching
anti-fuzzing is to find possible improvements that can be applied to fuzzers in order
to detect and warn the tester of anomalous behaviour. Another reason is to research
what kind of anti-fuzzing measures which could be applied to a target application,
and how much effort it is, to cripple or slow down state-of-the-art fuzzers.

Finding vulnerabilities in a target application can be a good thing or a bad thing,
depending on who finds them and what their intentions are. Developing an anti-
fuzzing algorithm will hinder all testers from fuzzing, no matter their motivations.
In some sense anti-fuzzing is security-by-obscurity since any action the anti-fuzzer
takes to hinder the fuzzer, that does not affect normal users, will be avoidable.

4.2 Objective

An anti-fuzzing technique has the objective to prevent or delay the detection of
crashes. The objective can be achieved by targeting the observational powers of a

31

4. Anti-Fuzzing

fuzzer. Generally speaking, a fuzzer has two types of observational power: crash
detection, the means of detecting when the target crashes; and metrics, the means
of generating feedback and information to the framework.

Depending on what observational powers a fuzzer has and how they are imple-
mented, different approaches needs to be taken in order to fool it. Honggfuzz, for
example, uses the Perf subsystem as described in 3.3.2 as a metric to determine the
number of branches taken in a target, while AFL uses its injected instrumentation
to do more or less the same thing.

4.3 Approaches

A program that has had anti-fuzzing techniques applied, should from a user perspec-
tive have unchanged behaviour. However, when the same application is run through
a fuzzer, it is allowed to behave differently depending on what techniques have been
applied. The techniques applied can be broken down into two major categories: ac-
tive techniques that modifies the behaviour or metrics only when the target is being
actively fuzzed; and, passive techniques that are "always on" and have the same
behaviour regardless of the target application being executed normally or through
a fuzzer.

4.3.1 Active

An active anti-fuzzing technique only applies upon detecting that the target appli-
cation is being fuzzed. While the target is running normally, the anti-fuzzing tech-
niques lie dormant and unused. An active anti-fuzzing approach works in a fashion
similar to anti-virus software. Each "virus" (fuzzer) needs to be fingerprinted be-
forehand in order to be detectable. There does not exist any catch-all solution for
detecting any and all fuzzers. For example, a simple way of implementing an active
anti-fuzzing technique would be to look at all running processes in the system. If a
known fuzzer is running, then the program could assume that it is being fuzzed, and
execute some measure designed to, for example, falsify any metrics that the fuzzer
is subscribing to. This may obviously produce false positives and is an unreliable
method.

Considering that the active anti-fuzzing approach require the target application
to actively detect it is being fuzzed, there will always exist solutions where the detec-
tion algorithm are bypassed. In the previous example, where the target application
compared running processes against known fuzzers, the tester can circumvent the
check as easily as renaming the fuzzer process. To counter this, one might imag-
ine that the target application can do a hash of each running process and compare
against a known set of hashes. This approach is obviously extremely costly and not
very scalable since it would require the target to know about each and every version
of all fuzzers it wants to target. Countering this approach is again, very easy. A
minor modification will produce a different (unknown) hash.

32

4. Anti-Fuzzing

A different approach for target applications to detect that they are being fuzzed
is to instead of trying to detect a running fuzzer, instead try to detect signature
techniques. A fuzzer may affect the running target application in some subtle way
that is detectable. For example, in the case of ptrace, a tracee may be able to
detect it is being traced. However if a fuzzer does not affect the target application,
then detection will be harder.

Assuming that the fuzzing detection technique is reliable, i.e. will detect all
fuzzers and produce no false-positives, an active anti-fuzzing approach has the ben-
efit of not affecting normal end users whatsoever. The anti-fuzzing mechanism will
only be activated once fuzzing occurs and thus from user perspective it will still
have the same behaviour. This may also harden the ability for a tester to analyse
the program since it will behave differently when the tester runs the program as a
user compared to when it is being run by the fuzzer.

4.3.2 Passive

A passive anti-fuzzing technique will always be performed. It may target the obser-
vational powers of a fuzzer or aim to lower the performance by reducing maximum
number of executions per second possible, as described in section 2.1, a high execu-
tion speed is crucial when fuzzing. From a user perspective a pause of a fraction of
a second will hardly be noticeable, but for a fuzzer trying to execute a target as fast
as possible the impact of the performance will be significant.

The negative aspect of a passive technique is of course that it will also affect
normal users. For example if crashes are masked or hidden, then if a user accidentally
trigger a crash the behaviour of the application will be unexpected and possibly
frustrating.

4.4 Anti-Fuzzing Techniques

During our research we identified four different attack-vectors against fuzzing har-
nesses. Note that since we only target mutational fuzzers, some of these techniques
may differ for generational fuzzers.
Execution Speed By intentionally decreasing the performance of the target ap-

plication, the fuzzer will not be able to reach a high execution speed. This
can be done by accessing limited resources or making the application heavier,
i.e utilising more CPU or Memory. This method will only delay finding any
potential crashes and not hinder them completely. Given enough time a fuzzer
may find them.

Masking Crashes The application may also choose to handle crashes internally,
thus not revealing to the fuzzer the fact that it has crashed. This can be
implemented through custom signal handlers for example.

Detection If the target application is able to detect the fuzzer it can choose act

33

4. Anti-Fuzzing

differently. A possibility is to simply exit the application directly when a fuzzer
is detected.

The Fuzzing Framework Most advanced fuzzers often contain a framework with
a feedback loop. The feedback is generated from observation of the target
application during, or after a fuzzing run. With this in mind, a target appli-
cation may use this knowledge to its advantage. For example a target appli-
cation may be designed to exploit limitations of the framework or manipulate
the metrics shown in the user interface, and thus not only fooling the fuzzer,
but also fooling the user of the fuzzer. A target application may also exploit
how the framework behaves in order to starve the computer of resources. For
example, by making each and every generated test case interesting, the whole
process fuzzing process is slowed down and eventually all available inodes will
be exhausted.eventuellt

flytta sista
meningen
till resul-
tatet

eventuellt
flytta sista
meningen
till resul-
tatet

An application may choose to implement one or several anti-fuzzing mechanisms
and combine them in any order to get the desired result. For example an application
may try to detect fuzzers and only if detected it will reduce the performance of the
application, thus not affecting end users in any way.

To delay the fuzzing process as much as possible it is preferable if the techniques
implemented are hard to detect. Consider the case where the binary hides all crashes
from the fuzzer, if a fuzz tester does not discover the technique, the whole fuzzing
process will be performed in vain. Each implementation of any anti-fuzzing technique
will leave traces. What side effects a technique have will determine how easy it is
to detect by an adversary. Therefore, to be aware of the toolbox that can be used
by the adversary, such as strace, strings and general process information from
/proc/ is important when implementing the anti-fuzzing techniques.

An alternative approach is to make the binary resistant to reverse engineering.
This forces the adversary to shift focus to trying to defeat the reverse engineer-
ing protection mechanisms or modify the fuzzer so it circumvents the anti-fuzzing
techniques. Either way this raises the bar for the adversary making it substantially
harder to correctly fuzz a target.

34

5
Anti-Fuzzing Evaluation

This chapter presents the results and evaluation of our anti-fuzz testing.

5.1 Applicability

Applying an anti-fuzzing technique into a project will require adding additional
source code. Hiding anti-fuzzing techniques in open-source projects is likely hard,
and could easily be detected and removed. However, in closed source products it is
not possible for an adversary to do code review and thus anti-fuzzing techniques are
harder to detect and easier to hide. For our evaluation we had access to the source
code of all target applications and could therefore gain advantages not available to
an adversary. Such an advantage is the instrumentation mode of AFL which would
not be available without access to the source code.

Utilising anti-fuzzing comes with a risk. If discovered, the techniques might
be countered or removed. Moreover, it may be hard to update the anti-fuzzing
techniques applied to a binary after it is released. Anti-fuzzing is therefore not
suitable as a long term solution for hiding vulnerabilities and should be viewed as
a stop-gap solution when little time has been available for internal fuzzing of the
product.

5.2 General Approaches

A general approach to anti-fuzzing is to switch out the fuzzer-supplied input to
a known safe input when the application detects it is being fuzzed. A pseudo-
code example of this can be seen in Listing 3. This has the advantage of running
the application normally even when the target is being fuzzed, but without the
possibility of crashing due to user input. Metrics will be largely unaffected and from
the observers perspective, everything will look normal. Of course, always using the
same input will, depending on the fuzzing framework in use, affect metrics. AFL for
example, will never report any new unique paths reached. Switching the input to a
known safe input will shift the focus of anti-fuzzing from using specific ways to fool
a fuzzer to detecting the fuzzing process. Failing to detect the fuzzer will in that
case effectively disable the anti-fuzzing technique. Instead of finding different ways

35

5. Anti-Fuzzing Evaluation

of fooling a fuzzer, this approach only require the application to detect it is being
fuzzed.

1 int main(argv)
2 if(beingFuzzed?()){
3 // Replace input with a randomly or deterministically selected safe input.
4 input = getSafeInput()
5 } else {
6 input = getInput(argv)
7 }
8

9 return runProgram(input)
10 }

Listing 3: A simple wrapper of an program. Upon detection of a fuzzer any input
will be replaced with a random safe input.

5.3 AFL

If we do not consider the instrumentation that AFL adds to a target applications,
then AFL could be considered passive since it will not affect a target in way that is
detectable at run-time. This is also true when detecting if a target application has
crashed or not. AFL will wait for the process to complete, then look at the return
code. If the return code is non-zero, then it will use macros defined in libc to decode
more information about what happened to the target. This approach can be seen
in Listing 4. WIFSIGNALED is a macro that will return true if a signal that was not
handled were used to kill the process and WTERMSIG is macro that will return the
signal identification number of the signal that terminated the process in question.

When the technique for detecting crashes is known it becomes easier to hide
them. Since AFL uses a somewhat primitive technique for detecting crashes, the
technique for masking them becomes somewhat primitive as well. We found two
ways of masking crashes from AFL: the first is for the target application to fork()
and run the actual program in the child. Any signal sent to the child is not prop-
agated up and detected by AFL; the second technique is to use signal handlers to
intercept interesting signals such as SIGSEGV.

The first technique were successful at masking crashes from AFL and since the
program is run normally, the metrics are largely unaffected. From the fuzzer’s
perspective it looks like the program is being fuzzed normally since it is; the crashes
are just not seen by AFL. However due to some overhead when forking, executions
per second is somewhat lowered using this method. It also seems that at least some
crashes are interpreted as hangs. This trend is visible in Figure 5.1. The reason for
AFL interpreting some crashes as hangs are unknown, but we theorise that it is due
to AFL having a modest timeout value before considering a test case as a hang, and
that when a SIGSEGV signal is generated and sent to the target application, that
this process takes longer than the defined timeout value.

36

5. Anti-Fuzzing Evaluation

The second technique we tried was to make use of signal handlers. By catching
signals sent to the process, the target can choose what it wants the fuzzer framework
to see. The process can ignore the signals and exit cleanly upon reception of crashing
signal or do something else entirely. Only signal 9, SIGKILL cannot be intercepted
by a target application. We tried this method and discovered that some crashes were
still detected by AFL. It turned out that the instrumented code contained a bug that
were sometimes triggered by mutated input from AFL. The issue were specific to
one of the compilers shipped with AFL and switching to another compiler fixed that
issue. Note that these crashing test cases did not crash when used in conjunction
with the non instrumented binary. The reason why the signal handler were ignored
for the instrumented code is unknown.

The disadvantage of using signal handlers is that it is easy to detect for an
adversary if they are looking. There exist tools that can print all system calls that
a target application does. This will print the signal handlers in plain text which
makes it obvious that further investigation is required by an adversary. Another
way is to look in /proc/<pid>/status: this file lists all signals that are ignored,
blocked or handled by the program with PID <pid>.

1 if (WIFSIGNALED(status) && !stop_soon) {
2 kill_signal = WTERMSIG(status);
3 return FAULT_CRASH;
4 }

Listing 4: How AFL detects crashes in target applications

1 int main(int argc, char const* argv[]) {
2 pid_t child = fork();
3 if(child < 0) {
4 printf("Fork failed.\n");
5 return -1;
6 } else if(child == 0) {
7 return realMain(argc, argv);
8 } else {
9 int status;

10 waitpid(child, &status, 0);
11

12 if(WIFEXITED(status)){
13 // If ok exit, return with status.
14 return WEXITSTATUS(status);
15 }
16 // Pretend like everything is okay, exit quietly.
17 return 0;
18 }
19 }

Listing 5: Wrapper of an application, if the target crashed it will replace the return
code with 0.

37

5. Anti-Fuzzing Evaluation

Figure 5.1: Graph showing the number of hangs when fuzzing YAN010001 using
AFL with the fork technique applied.

5.4 Honggfuzz

As described in Section 3.3.1 Honggfuzz make use of ptrace to observe the target
application. This enables Honggfuzz to halt the target directly when signals are sent
from the operating system and thus prevents it from hiding signals. The technique
where signal handlers are used to mask crashes, as discussed in Section 5.3, will not
work when ptrace is used. In order to mask crashes, a target observed by ptrace
must therefore never cause a signal to be generated in the first place.

To counter Honggfuzz, an active approach was used to detect if ptrace have at-
tached to the target process. As Listing 6 show, the method ptrace(PTRACE_TRACEME, 0, 0, 0)
allows a target to determine if a process is being traced by ptrace. The system call
is actually used by a tracee to tell a tracer to trace the tracee, but since ptrace only
allows one tracer at any given time, the system call will fail if a process has already
been attached and the conditional statement in line 4 in Listing 6 will be true.

1 int realMain();
2 int fakeMain();
3 int main(int argc, char const* argv[]) {
4 if(ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
5 // Ptrace have attached to the process, do alternative branching
6 return fakeMain();
7 }
8 return realMain();
9 }

Listing 6: A simple wrapper of a target. Upon detection of ptrace Honggfuzz is
assumed to be in use and the alternative, fakeMain() branch executed.

The active technique, presented in Listing 6, can be further enhanced by applying
the general technique discussed in 5.2. Instead of using fakeMain(), you would use
realMain() but with the input switched to a safe variant. This approach would
be advantageous since it would emulate the target application as much as possible
without having to worry about it crashing, thus any collected metrics would look
legitimate.

38

5. Anti-Fuzzing Evaluation

5.5 Outcome

After implementing the anti-fuzzing algorithms, the targets that crashed during the
fuzzing evaluation was rerun with anti-fuzzing capabilities built-in. None of the
fuzzers was able to detect any crashes in the targets (see Table 5.1).

Target (with Anti-Fuzzing) AFL Honggfuzz
CADET00001 7 7

EAGLE00005 7 7

NRFIN00010 7 7

YAN0100001 7 7

YAN0100003 7 7

Table 5.1: Table showing which of the targets with anti-fuzzing capabilities emitted
one or more crashing states for each of the selected fuzzers

39

5. Anti-Fuzzing Evaluation

40

6
Ethical considerations

A major part of this thesis work is about deceiving fuzzers. The ability to make
it harder for outside parties to find bugs in the application that is employing the
anti-fuzzing techniques. The techniques will not resolve the bugs or vulnerabilities,
only make them harder to detect when using fuzzing. This could for example be
useful for a company that has a closed source application and want to minimise the
ability of outsiders to fuzz the application, essentially security by obscurity. This has
ethical aspects, since that same company may want to hide malicious code that is
discoverable through fuzzing or may not want to employ fuzzing themselves because
of time and cost restraints.

An anti-fuzzing technique is not a long-term solution and makes it harder for
white-hats, security researchers with good intentions, to find exploitable bugs in
software. Any malicious entity may find an exploit through fuzzing, or some other
means that a white hats did not find, thus leaving users vulnerable for a longer time.
Thus, one should not rely on anti-fuzzing as a security measurement. However,
from a white-hat perspective, it is important to be aware that anti-fuzzing may be
employed to obscure bugs when performing fuzzing.

41

6. Ethical considerations

42

7
Conclusion

In this thesis we did an evaluation of two state-of-the art fuzzers: Honggfuzz and
American Fuzzy Lop (AFL). The fuzzers were tested against a real world application,
MediaInfo, and a test suite of programs built for evaluating automated vulnerability
discovering tools. The results show that AFL was able to outperform Honggfuzz by
finding crashes in five target application in the test suite while Honggfuzz only found
two. For MediaInfo, AFL was able to detect 20 unique crashes and Honggfuzz was
able to detect two.

We also set out to research of the subject of anti-fuzzing, a technique to prevent
an application from being fuzzed. The research shows that it is possible to imple-
ment anti-fuzzing techniques in an application to prevent both AFL and Honggfuzz
to find crashes. Anti-fuzzing can be used to discreetly hide or cover up vulnerabil-
ities in applications and without awareness of anti-fuzzing a fuzz tester may spend
considerable amount of time on a fuzzing process that can’t produce any crashes.

43

7. Conclusion

44

Bibliography

[1] B. Miller. (2008, Feb.) Foreword for fuzz testing book. [Online]. Available:
http://pages.cs.wisc.edu/~bart/fuzz/Foreword1.html

[2] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of
unix utilities,” Communications of the ACM, vol. 33, no. 12, pp. 32–44, 1990.

[3] A. K. Patrice Godefroid and M. Y. Levin, “Grammar-based whitebox fuzzing,”
in ACM Sigplan Notices, vol. 43. ACM, 2008, pp. 206–215.

[4] M. M. Chris Evans and T. Ormandy. (2016, May) Fuzzing at scale. [Online].
Available: https://security.googleblog.com/2011/08/fuzzing-at-scale.html

[5] O. Whitehouse. (2014, Feb.) Introduction to anti-
fuzzing: A defence in depth aid. [Online]. Avail-
able: https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/
2014/january/introduction-to-anti-fuzzing-a-defence-in-depth-aid/

[6] M. Zalewski. (2016, Jan.) american fuzzy lop. [Online]. Available: http:
//lcamtuf.coredump.cx/afl/

[7] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarajan, and
J. Steidl, Fuzz revisited: A re-examination of the reliability of UNIX utilities and
services. University of Wisconsin-Madison, Computer Sciences Department,
1995.

[8] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability discov-
ery. Pearson Education, 2007.

[9] J. C. King, “Symbolic execution and program testing,” Communications of the
ACM, vol. 19, no. 7, pp. 385–394, 1976.

[10] C. Cadar and K. Sen, “Symbolic execution for software testing: three decades
later,” Communications of the ACM, vol. 56, no. 2, pp. 82–90, 2013.

[11] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting fuzzing through se-
lective symbolic execution,” NDSS ‘16, 2016.

[12] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated whitebox fuzz

45

http://pages.cs.wisc.edu/~bart/fuzz/Foreword1.html
https://security.googleblog.com/2011/08/fuzzing-at-scale.html
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2014/january/introduction-to-anti-fuzzing-a-defence-in-depth-aid/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2014/january/introduction-to-anti-fuzzing-a-defence-in-depth-aid/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Bibliography

testing.” in NDSS, vol. 8, 2008, pp. 151–166.

[13] S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive mutational fuzzing,”
in Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015, pp.
725–741.

[14] J. Yang, H. Zhang, and J. Fu, “A fuzzing framework based on symbolic exe-
cution and combinatorial testing,” in Green Computing and Communications
(GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE
International Conference on and IEEE Cyber, Physical and Social Computing.
IEEE, 2013, pp. 2076–2080.

[15] M. Zalewski. (2016, Jan.) Technical "whitepaper" for afl-fuzz. [Online].
Available: http://lcamtuf.coredump.cx/afl/technical_details.txt

[16] M. Kerrisk. (2016, Apr.) Linux programmer’s manual - signal(7). [Online].
Available: http://man7.org/linux/man-pages/man7/signal.7.html

[17] A. D. Householder, “Well there’s your problem: Isolating the crash-inducing
bits in a fuzzed file,” DTIC Document, Tech. Rep., 2012.

[18] A. Zeller, “Isolating cause-effect chains from computer programs,” in Proceed-
ings of the 10th ACM SIGSOFT symposium on Foundations of software engi-
neering. ACM, 2002, pp. 1–10.

[19] H. Cleve and A. Zeller, “Locating causes of program failures,” in Proceedings
of the 27th international conference on Software engineering. ACM, 2005, pp.
342–351.

[20] A. Helin. (2016, Apr.) Radamsa. [Online]. Available: https://github.com/aoh/
radamsa

[21] Fitblip. (2016, May) Sulley. [Online]. Available: https://github.com/
OpenRCE/sulley

[22] Deja vu Security. (2016, Feb.) Peach fuzzer. [Online]. Available: http:
//community.peachfuzzer.com/

[23] S. Hocevar. (2016, Apr.) zzuf. [Online]. Available: https://github.com/
samhocevar/zzuf

[24] Quickfuzz.org. (2016, Feb.) Quickfuzz by cifasis. [Online]. Available:
http://quickfuzz.org/

[25] M. Zalewski. (2016, Jan.) Afl readme. [Online]. Available: http://lcamtuf.
coredump.cx/afl/README.txt

[26] R. Swiecki. (2016, Apr.) Honggfuzz. [Online]. Available: http://http:
//google.github.io/honggfuzz/

[27] Intel. (2016, Apr.) Intel performance counter monitor - a better way to

46

http://lcamtuf.coredump.cx/afl/technical_details.txt
http://man7.org/linux/man-pages/man7/signal.7.html
https://github.com/aoh/radamsa
https://github.com/aoh/radamsa
https://github.com/OpenRCE/sulley
https://github.com/OpenRCE/sulley
http://community.peachfuzzer.com/
http://community.peachfuzzer.com/
https://github.com/samhocevar/zzuf
https://github.com/samhocevar/zzuf
http://quickfuzz.org/
http://lcamtuf.coredump.cx/afl/README.txt
http://lcamtuf.coredump.cx/afl/README.txt
http://http://google.github.io/honggfuzz/
http://http://google.github.io/honggfuzz/

Bibliography

measure cpu utilization. [Online]. Available: https://software.intel.com/en-us/
articles/intel-performance-counter-monitor

[28] L. T. et al. (2016, Apr.) perf: Linux profiling with performance counters.
[Online]. Available: https://perf.wiki.kernel.org

[29] R. Vitillo. (2016, Apr.) Performance tools development. [Online].
Available: http://indico.cern.ch/event/141309/session/4/contribution/20/
attachments/126021/178987/RobertoVitillo_FutureTech_EDI.pdf

[30] Darpa. (2016, Mar.) Darpa cyber grand challenge sample challenges. [Online].
Available: https://github.com/CyberGrandChallenge/samples

[31] ——. (2016, Mar.) Darpa cyber grand challenge platform. [Online]. Available:
http://www.cybergrandchallenge.com/site/index.html#platform

[32] MediaArea. (2016, May) Mediainfo. [Online]. Available: https://github.com/
MediaArea/MediaInfo

[33] Mozilla. (2016, Feb.) Fuzzdata. [Online]. Available: https://github.com/
MozillaSecurity/fuzzdata

47

https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://perf.wiki.kernel.org
http://indico.cern.ch/event/141309/session/4/contribution/20/attachments/126021/178987/RobertoVitillo_FutureTech_EDI.pdf
http://indico.cern.ch/event/141309/session/4/contribution/20/attachments/126021/178987/RobertoVitillo_FutureTech_EDI.pdf
https://github.com/CyberGrandChallenge/samples
http://www.cybergrandchallenge.com/site/index.html#platform
https://github.com/MediaArea/MediaInfo
https://github.com/MediaArea/MediaInfo
https://github.com/MozillaSecurity/fuzzdata
https://github.com/MozillaSecurity/fuzzdata

Bibliography

48

A
Appendix 1

A.1 CGC Seeds

Target Seed
CADET00001 <newline>
EAGLE00005 HANGEMHIGH!

KPRCA00001 HELLO
AUTH

KPRCA00003 <newline>
KPRCA00015 <newline>
NRFIN00003 <newline>
NRFIN00010 <newline>
NRFIN00013 <newline>

TNETS00002
-1583597902 create cat

-1583597903 create hotdog
-1583597902 name

YAN0100001 <newline>

YAN0100002

0
0
16
c
c
c
p

YAN0100003 <newline>

Table A.1: List of the seeds provided to the CGC Challenges

I

A. Appendix 1

A.2 MediaInfo seeds

The following is the list of seeds used when fuzzing MediaInfo. The seeds can be
found in the fuzzdata repository from Mozilla [33].

– 008b8bb75b8a487dc5aac86c9abb06fb.png

– 194531363df5b73f59c4c0517422f917.jpg

– 1.jp2

– 448636.ogv

– 463696.bmp

– 55abb3cc464305dd554171c3d44cb61f.gif

– audio-quad.wav

– barsandtone.flv

– bear_mpeg4asp_mp3.avi

– black100x100-aspect3to2.webm

– bubblewrap.swf

– bunny_oh2.264

– detodos.mp3

– example4.midi

– favicon.ico

– mpeg4-amr_nb.3gp

– pdf.pdf

– romney.zip

– short-cenc.mp4

– Sorenson.mov

– spacestorm-1000Hz-100ms.ogg

– test27.mp2

– test33.mp1

– webp.webp

II

A. Appendix 1

A.3 Hardware specification for test bed

Operating System
Operating System Ubuntu 14.04.4 LTS
Kernel Linux 4.2.0-35-generic (x86_64)

CPU 1
Model Intel Xeon E5620
Clock speed 2.4 GHz
Cores 4
Hyper-threading Yes

CPU 2
Model Intel Xeon E5620
Clock speed 2.4 GHz
Cores 4
Hyper-threading Yes

RAM
Memory Type DDR3
Size 98304 MB (12 x 8 GB)
Speed 1066 MHz

Hard drive
Model Western Digital WD5003AZEX
Size 500GB
Rotation Speed 7200 rpm

Table A.2: Specification of the hardware on the testing platform

III

A. Appendix 1

A.4 Asan Triage

The following is a script that compares backtraces of a set of crashing inputs.
We used a slightly modified version of this script when fuzzing the CGC targes
due to them expecting input through stdin. The script require the targets to
be compiled with address sanitizer support for best results. Example invocation:
./asan-triage.py my_folder_with_crashes "./prog -args @@"

1 #!/usr/bin/python2
2

3 """
4 This is free and unencumbered software released into the public

domain.↪→

5 Anyone is free to copy, modify, publish, use, compile, sell, or
6 distribute this software, either in source code form or as a

compiled↪→

7 binary, for any purpose, commercial or non-commercial, and by any
8 means.
9 In jurisdictions that recognize copyright laws, the author or

authors↪→

10 of this software dedicate any and all copyright interest in the
11 software to the public domain. We make this dedication for the

benefit↪→

12 of the public at large and to the detriment of our heirs and
13 successors. We intend this dedication to be an overt act of
14 relinquishment in perpetuity of all present and future rights to

this↪→

15 software under copyright law.
16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
18 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT.↪→

19 IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE,↪→

21 ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR↪→

22 OTHER DEALINGS IN THE SOFTWARE.
23 For more information, please refer to <http://unlicense.org/>
24 """
25

IV

A. Appendix 1

26 import os
27 import os.path
28 import argparse
29 import subprocess
30 import random
31

32 remove_nils = lambda xs: filter(lambda x: x <> ’’, xs)
33

34

35 if __name__ == "__main__":
36

37 # Arguments
38 parser = argparse.ArgumentParser(description=’’)
39 parser.add_argument("seeds", help="", type=str, default=None)
40 parser.add_argument("cmd", help="", type=str, default=None)
41 parser.add_argument("-d", help="", type=int, default=5)
42 parser.add_argument("-p", help="", action="store_true",

default=False)↪→

43

44

45 options = parser.parse_args()
46 seeds = options.seeds
47 depth = options.d
48 prune = options.p
49

50 cmd = options.cmd
51 gdb_cmd = "env -i ASAN_OPTIONS=’abort_on_error=1’ gdb -batch -ex

’tty /dev/null’ -ex run -ex bt 20 --args @@ 2> /dev/null"↪→

52 all_files = []
53 dedup_files = dict()
54

55 for x, y, files in os.walk(seeds):
56 nfiles = len(files)
57 for f in files:
58 f = f.replace("(","\(")
59 f = f.replace(")","\)")
60 f = f.replace("$","\$")
61 f = f.replace(",","\,")
62

63 all_files.append(x + "/".join(y) + "/" + f)
64

65

V

A. Appendix 1

66 random.shuffle(all_files)
67 all_files = all_files[:1000]
68 nfiles = len(all_files)
69

70 for progress, testcase in enumerate(all_files):
71 prepared_cmd = cmd.split("@@")
72 prepared_cmd = prepared_cmd[0].split(
73 " ") + [testcase] + prepared_cmd[1].split(" ")
74 prepared_cmd = remove_nils(prepared_cmd)
75 #print prepared_cmd
76 out = subprocess.check_output(gdb_cmd.replace(
77 "@@", " ".join(prepared_cmd)), shell=True)
78 #print out
79 backtrace = out.split("#")[1:]
80 key = ""
81 size = os.path.getsize(testcase)
82 dkey = 0
83 for x in backtrace:
84

85 if dkey == depth:
86 break
87

88 if "??" in x or "__" in x:
89 continue
90 if " in " in x:
91 x = remove_nils(x.split(" "))
92 key = key + " " + x[3]
93 dkey = dkey + 1
94

95 else:
96 x = remove_nils(x.split(" "))
97 key = key + " " + x[1]
98 dkey = dkey + 1
99

100 # print key
101 y = dedup_files.get(key, [])
102 dedup_files[key] = y + [(testcase,size)]
103

104 for (k, xs) in dedup_files.items():
105 print "*"+k,
106 xs = sorted(xs, key=lambda x: x[1])
107 for x in xs[:1]:

VI

A. Appendix 1

108 print x,
109

110 if prune:
111 for x in xs[1:]:
112 os.remove(x[0])
113

114 print ""

VII

	Introduction
	Purpose and Goals
	Scope and Limitations

	Fuzzing
	Fuzzer Categories
	Generational
	Template

	Mutational
	Strategies

	Seeds
	Fuzzing Framework
	Feedback Loop
	Distributed Fuzzing
	Crash Identification

	Fuzzer Evaluation
	Criteria
	Rejected Fuzzers

	American Fuzzy Lop (AFL)
	Instrumentation
	Crash detection

	Honggfuzz
	Crash detection
	The Perf subsystem

	Target Applications
	Cyber Grand Challenges
	MediaInfo

	Evaluation Technique
	Testing Platform

	Result
	Cyber Grand Challenges
	Execution speed

	MediaInfo
	Execution Speed
	Crashes
	Resource Utilisation

	Anti-Fuzzing
	Rationale
	Objective
	Approaches
	Active
	Passive

	Anti-Fuzzing Techniques

	Anti-Fuzzing Evaluation
	Applicability
	General Approaches
	AFL
	Honggfuzz
	Outcome

	Ethical considerations
	Conclusion
	Appendix 1
	CGC Seeds
	MediaInfo seeds
	Hardware specification for test bed
	Asan Triage

